由于知道一个平面上曲线的导数,就是对应点上的斜率。
那么在曲面中,是不是该有一个切曲面。
而在曲体里,会有切体。
如何去用数学工具去研究呢?
曲面中,只有一个x变量,出现的就是对应的直线。
而曲面中,需要一个平面的话,就需要两个直线去确定一个平面。
而曲面是在x、y两个变量中的变化,曲面方程的求导只能按照直线求导的方式来。
那先去求x的导数,还是先求y的导数?这个先后如果求的导数不同话,那就说明有一种方向不同的连续性的东西。
当然这也是以后,柯西准则,去判断曲面连续性的东西。
而这里,去对曲面甚至曲体甚至曲高维体求导,就用雅可比行列式。
雅可比行列式通常称为雅可比式,它是以n个n元函数的偏导数为元素的行列式。
事实上,在函数都连续可微(即偏导数都连续)的前提之下,它就是函数组的微分形式下的系数矩阵(即雅可比矩阵)的行列式。
若因变量对自变量连续可微,而自变量对新变量连续可微,则因变量也对新变量连续可微。
这可用行列式的乘法法则和偏导数的连锁法则直接验证。
也类似于导数的连锁法则。
偏导数的连锁法则也有类似的公式;这常用于重积分的计算中。
雅可比行列式求导,两个变量之间是垂直的,但是也能反应出斜向的一些曲率变化力。
对雅可比矩阵的理解就是对多变量向量的求导,跟y=f(x)代表曲线切线一样,雅可比矩阵代表了一个高维度的切空间,有了这个切空间,就可以通过设定初值迭代出无法得到解析解的微分方程组的数值解。比如三体、多摆等问题~
雅可比在想,如果是任意的高维表面,我在这个表面上,开始做出对应这个维度的切体,这个切体沿着这个高维面滑动,滑动之时,这个切体会发生变化。
可以研究这个切体的变化来推敲这个高维物体的性质。
这样的模型很难感悟,需要感悟这些数字,因为光是数字,很难形成图形,而这些切体也难于用大脑想象,同时切体中的形状也会相互交错。
喜欢数学心请大家收藏:()数学心
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
www.baquge.cc www.cwzww.com www.9kutxt.com www.shuhuangxs.com www.du8.org相邻推荐:1635改变世界 我是九世单传的天才幸运糖宝 萝莉:变成吸血姬后被魔女捡到了 丘比特今夜失明 穿进炮灰文,太上皇竟能读我心! 花魁夫郎[女尊] 对照组贴脸开大[快穿] [足球同人] 带刀侍卫 啊,张嘴!天道又追着福宝喂饭了 [综漫] 除了荒神,所有人都重生了 如果男主太晚才出现 玄灵界都知道我柔弱可怜但能打 君为依[重生] [综英美] 维持人设好难 [少年漫同人] 和新一同居之后 群友全穿越!就我在地球 无纠+番外 夏夜撕咬 [综漫] 白濑捅刀失败以后 我的员工全是言情女主